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Functional Data & Wavelets

Part 3: Functional Data & Wavelets

Functional data

Brief intro to wavelets

Curve regression models

Curve classification

Applications to Near Infrared spectral data from Chemometrics
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Functional Data & Wavelets Functional Data

Overall objective: Methods for prediction or classification or clustering
based on functional data (multiple curves).

Regression: a continuos response is observed.

Classification: class membership observed in a training set.

Clustering: group membership needs to be uncovered.

Data are curves.
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Functional Data & Wavelets Functional Data

Motivating Examples from NIR Calibration

Experiment: 40 biscuit doughs made with variations in quantities
of fat, flour, sugar and water in recipe.
Fat 15-21%, Sugar 10-23%, Flour 44-54%, Water 11-17%

Data: Composition (by weight) of the 4 constituents and spectral
data at 700 wavelengths (from 1100nm to 2498nm in steps of
2nm) for each dough piece.

Aim: Use the spectral data to predict the composition.
Wavelets as a dimension reduction tool that preserves local
features.
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Functional Data & Wavelets Functional Data
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Functional Data & Wavelets Functional Data

Another Example

NIR spectra used in analysis of food and drink and
pharmaceutical products, measured at hundreds of wavelengths.

3 varieties of wheat, 94 observations. NIR spectra with 100
wavelengths from 850 to 1048nm in steps of 2nm.

Aim: Use the spectral data to predict the wheat variety.
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Functional Data & Wavelets Functional Data
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Functional Data & Wavelets Functional Data

Our Approach

Use wavelets as dimension reduction tool that preserves local
features. Apply DWT to curves. Wavelet coefficients summarise
curve features in an efficient way, they are localized (unlike Fourier
coefficients) and can capture noise in the data.

Develop Bayesian methods in wavelet domain for simultaneous
feature selection and prediction or classification. We use mixture
priors and Bayes methods to look for wavelet component that well
describe the variation in the responses.

Wavelet coeffs selection is done by assigning a probability to
every possible subset and then searching for subsets with high
probability. Small coefficients can be important.
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Functional Data & Wavelets Wavelets

Mayor Milestones on Wavelets

The basic idea behind wavelets is to represent a generic function with
simpler functions (building blocks) at different scales and locations.

1807: Fourier orthogonal decomposition of periodic signals

1946: Gabor windowed Fourier transform (STFT)

1984: A. Grossmann and J. Morlet introduce the continuous wavelet transform
for the analysis of seismic signals.

1985: Y. Meyer defines discrete orthonormal wavelet bases.

1989: S. Mallat links wavelets to the theory of “multiresolution analysis” (MRA) a
framework that allows to construct orthonormal bases. A discrete wavelet
transform is defined as a simple recursive algorithm to compute the wavelet
decomposition of a signal from its approximation at a given scale.

1989: I. Daubechies constructs wavelets with compact support and a varying
degree of smoothness.

1992: D. Donoho and I. Johnstone use wavelets to remove noise from data.
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Functional Data & Wavelets Wavelets

Wavelets vs Fourier Representations

Given f and a basis {f1, . . . , fn} → series expansion

f (x) =
∑

i

ai fi(x)dx

ai =< f , fi >=

∫

f (x)fi(x)dx

Fourier transforms measure the frequency content of a signal.
Wavelet transforms provide a time-scale analysis.
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Functional Data & Wavelets Wavelets

Wavelets as “Small Waves”

Mother wavelet ψ as an oscillatory function with zero mean
ψ(x) :

∫

R ψ(x)dx = 0
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Wavelets as orthonormal basis
ψj ,k(x) = 2j/2ψ(2jx − k)

with j , k scale and translation parameters.
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Functional Data & Wavelets Wavelets

Examples of Wavelet Families

Haar wavelets. The simplest family of wavelets, already known before
the formulation of the wavelet theory (Haar, 1909).
ψ(x) = 1 for 0 ≤ x < 1/2; −1 for 1/2 ≤ x < 1 and 0 otherwise.
Haar wavelets constructed from ψ via dilations and translations

Given a generic function f , Haar wavelets approximate f with
piecewise constant functions (not continuous)
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Functional Data & Wavelets Wavelets

Daubechies Wavelets
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Compact support (good time localization)
Vanishing moments

∫

x lψ(x)dx = 0, l = 0,1, . . . ,N ensure decay
as < f , ψj ,k >≤ C2−jN , (good for compression)
Various degrees of smoothness. For large N, φ ∈ CµN , µ ≈ 0.2.
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Functional Data & Wavelets Wavelets

Properties of Wavelets

Wavelet series: f (x) =
∑

j ,k < f , ψj ,k > ψj ,k(x)

{Wf (j , k) = 〈f , ψj ,k〉 =

∫

f (x)ψj ,k (x)dx}j ,k∈Z

describing features of f at different locations and scales.

Properties:

Small waves with zero mean

Time-frequency localization

Good at describing non-stationarity and discontinuities

Multi-scale decomposition of functions (MRA) - sparsity, shrinkage

Recursive relationships among coefficients → DWT
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Functional Data & Wavelets Wavelets

Wavelets in Practice (DWT)

Let’s consider a vector Y of observations of f at n equispaced points

yi = f (ti), i = 1, . . . ,n, with n = 2m

Discrete Wavelet Transforms operate via recursive filters applied to Y

data ≡ c(m) H
−→ c(m−1) H

−→ · · ·
H
−→ c(m−r)

G
ց

G
ց

G
ց

d(m−1) · · · d(m−r)

H : cm−1,k =
∑

l

hl−2kcm,l , G : dm−1,k =
∑

l

gl−2kcm,l , ...

Then, in practice,

Y DWT
−→ d(Y) = (c(m−r),d(m−r),d(m−r−1), . . . ,d(m−1))

discrete approx of < f , ψj ,k > at scales m − 1, . . . ,m − r
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Functional Data & Wavelets Wavelets

Example
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Marina Vannucci (Rice University, USA) Bayesian Variable Selection (Part 1) PASI-CIMAT 04/28-30/2010 16 / 37



Functional Data & Wavelets Wavelets

Matrix Notation of the DWT

yi = f (ti), i = 1, . . . ,n, with n = 2m

DWT: Y DWT
−→ d(Y) = WY, W determined by ψ, W′W = I

Variances and covariances of DWT coefficients:

ΣΣΣd(Y) = WΣΣΣYW′

for given ΣY(i , j) = [γ(|i − j |)]
γ(τ) autocovariance function of the process generating the data

VANNUCCI & CORRADI (JRSS, Series B, 1999).
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Functional Data & Wavelets Wavelets

Fields of Application

Applied Mathematics: Partial/ordinary differential equations
solutions; representation of basic operators ...

Engineering: Signal and image processing (compression,
smoothing) ...

Statistics: Smoothing of noisy data; nonparametric density and
regression estimation; stochastic processes representation, time
series, functional data ...

Physics, Biology, Genetics: Turbolence, DNA sequence analysis,
magnetic resonance imaging ...

Music, Human Vision, Computer Graphics ...
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Functional Data & Wavelets Curve Regression

Curve Regression

The basic setup is a multivariate linear regression model, with n
observations on a q-variate response and p explanatory variables

Y = 1nααα
′ + XB + E

Y(n × q) − responses, X(n × p)− predictors

Concern is with functional predictor data, ie the situation where each
row of X is a vector of observations of a curve x(t) at p equally spaced
points.

Interest is in situations where p is large→ variable selection and/or
dimension reduction methods are needed
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Functional Data & Wavelets Curve Regression

Wavelet Transformation

A wavelet transform is applied to each row of X
Y = 1nααα

′ + XW′WB + E, W′W = I
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Y = 1nααα
′ + DB̃ + E

with B̃ = WB and D = XW′ a matrix of wavelet coefficients.
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Functional Data & Wavelets Curve Regression

Prior Model

If H is the var-cov matrix of the prior on B then

H̃ = [WHW′]

We compute transformed covariance priors on B̃ as WHW′ using
results of Vannucci and Corradi, JRSSB (1999).

Priors on ααα and ΣΣΣ are unchanged
(B̃ → B, H̃ → H)
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Functional Data & Wavelets Curve Regression

Selection Prior

Mixture priors to represent negligible coefficients.
A latent binary vector γγγ identifies different models

γγγ = (γ1, . . . , γp), γj = 0,1, γj = 1 ↔ Dj in

Coefficients are drawn from a mixture distribution

B − B0 ∼ N (Hγγγ,ΣΣΣ)

B:,j ∼ (1 − γj)I0 + γjN(0,hjjΣΣΣ)

π(γγγ) as single Bernoulli’s or Beta-Binomial or related predictors

Prob(γj = 1) = wj , wj = w , j = 1, ...,p
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Functional Data & Wavelets Curve Regression

Metropolis Search

MCMC used to ”search” the posterior g(γγγ) ∼ π(γγγ|Y,D) looking for
good models.

At each step the algorithm generates γγγnew from γγγold by one of two
possible moves:
Add or Delete a component by choosing at random one
component in γγγold and changing its value.
Swap two components by choosing independently at random a 0
and a 1 in γγγold and changing both of them.

The new candidate γγγnew is accepted with probability

min{
g(γγγnew)

g(γγγold)
,1}
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Functional Data & Wavelets Curve Regression

Prior Specification

Priors on ααα and ΣΣΣ vague and largely uninformative

ααα′ − ααα′
0 ∼ N (h,ΣΣΣ), h → ∞, ΣΣΣ ∼ IW(δ,Q)

Choices for Hγγγ :

Hγγγ = C ∗ [(D′D)−1]γγγ

Hγγγ = C ∗ [diag(D′D)−1]γγγ

H = CI

H = AR(σ, ρ) with EB estimates of hyperparameters,

L(·; D,Y) = |K|−q/2|Q|−n/2|In + K−1YQ−1Y′|−(δ+q+n−1)/2

K = I + DHD′

Choice of w :
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Functional Data & Wavelets Curve Regression

Diagonal Elements of H̃ = WHW′
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Functional Data & Wavelets Curve Regression

Posterior Inference

The stochastic search results in a list of visited models (γγγ(0), γγγ(1), . . .)
and their corresponding relative posterior probabilities

p(γγγ(0)|D,Y),p(γγγ(1)|D,Y) . . .

Select variables:
- in the “best” models, i.e. the γγγ’s with highest p(γγγ|D,Y) or
- with largest marginal posterior probabilities

Prediction on future Y f :
- via Bayesian model averaging (BMA) as posterior weighted

average of model predictions
- via single model predictions as LS/Bayes predictions on single best

models or LS/Bayes predictions with “threshold” models (eg,
“median” model) obtained from estimated marginal probabilities of
inclusion.
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Functional Data & Wavelets Application to NIR Spectral Data

Biscuit Doughs

4 parallel MCMC with 100,000 iterations and about 40,000 successful
moves per chain.

H(i , j) = σ2ρ|i−j |, σ2 = 254, ρ = .32

PLS(MSE): .151, .583, .375, .105
PCR(MSE): .160, .614, .388, .106
Stepwise MLR: .044, 1.188, .722, .221
BMA: 500 models and 219 coeffs

.063, .449, .348, .050
Modal (MSE): 10 coeffs ((0%, 0%, 0%, 37%, 6%, 6%, 1%, 2%) from
coarsest to finest level)

.059, .466, .351, .047
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Functional Data & Wavelets Application to NIR Spectral Data

Diagnostic Plots
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Functional Data & Wavelets Application to NIR Spectral Data

Marginal Plots
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Functional Data & Wavelets Application to NIR Spectral Data

IDWT to Columns of LS Estimate of B̃
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Functional Data & Wavelets Curve Classification

Probit Models for Classification

Z → n × 1 categorical response vector (J categories).
X → n × p predictor matrix. We have functional predictor data.
Probit models use data augmentation and latent data to write

Yi = ααα′ + X′
iB + ǫǫǫi , ǫǫǫi ∼ N(0,ΣΣΣ), i = 1, . . . ,n

Relationship between the realization zi and the unobserved Yi

zi =

{

0 if yi ,j < 0 for every j
j if yi ,j = max

1≤k≤J−1
{yi ,k}

... now transform to wavelets, use selection prior on wavelet
coefficients and MCMC for inference in a probit model ...
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Functional Data & Wavelets Curve Classification

Results for Wheat Data

3 classes, 94 samples, NIR transmission spectra at p=100
wavelengths from 850 to 1048nm.

Variety 1 2 3 Total
Training 32 22 17 71

Validation 10 7 6 23

Fearn et al.(2001)
Bayesian decision approach that balances costs for variables
against the loss of misclassification.
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Functional Data & Wavelets Curve Classification

Mis-classification Errors

Prediction Var. Sel./# PC. Error
“Best” Model 5 3/23

Marginal model 9 3/23
BD(Fearn et al.) 6 5/23
BD(Fearn et al.) 12 3/23
LDA with PCA 14–18 PCs 4/23
QDA with PCA 8–10 PCs 7/23
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Functional Data & Wavelets Curve Classification
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Functional Data & Wavelets Curve Classification
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Plots (a) and (c) are obtained using 4 wavelet coefficients and plots
(b) and (d) using 9 coefficients.
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Functional Data & Wavelets Curve Classification
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Functional Data & Wavelets Matlab Code

Code from my Website

bvsme wav: Bayesian Variable Selection applied to wavelet
coefficients

Metropolis search

non-diagonal selection prior

Bernoulli priors or Beta-Binomial prior

Predictions by LS and BMA

http://stat.rice.edu/∼marina
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